90 research outputs found

    Heterogeneous multicore systems for signal processing

    Get PDF
    This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated desk side computers are an appealing alternative to other high performance computing (HPC) systems: being composed of commodity hardware components fabricated in large quantities, their price-performance ratio is unparalleled in the world of high performance computing. Essentially bringing “supercomputing to the masses”, this opens up new possibilities for application fields where investing in HPC resources had been considered unfeasible before. One of these is the field of bioelectrical imaging, a class of medical imaging technologies that occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance Imaging (fMRI). In the scope of this work, several computational challenges encountered in bioelectrical imaging are tackled with this new kind of computing resource, striving to help these methods approach their true potential. Specifically, the following main contributions were made: Firstly, a novel dual-GPU implementation of parallel triangular matrix inversion (TMI) is presented, addressing an crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source localization. This includes not only a highly efficient implementation of the routine itself achieving excellent speedups versus an optimized CPU implementation, but also a novel GPU-friendly compressed storage scheme for triangular matrices. Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It is integrated into a simulation environment for electrical impedance tomography (EIT) that requires frequent solution of complex systems with millions of unknowns, a task that this solution can perform within seconds. In terms of computational throughput, it outperforms not only an highly optimized multi-CPU reference, but related GPU-based work as well. Finally, a GPU-accelerated graphical EEG real-time source localization software was implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded anatomical detail running more complex localization algorithms. Additionally, a novel implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions has been included

    Entropy generation assessment for wall-bounded turbulent shear flows based on the Reynolds Analogy assumptions

    Get PDF
    Heat transfer modeling plays a major role in design and optimization of modern and efficient thermal-fluid systems. Further, turbulent flows are thermodynamic processes, and thus, the second law of thermodynamics can be used for critical evaluations of such heat transfer models. However, currently available heat transfer models suffer from a fundamental shortcoming: their development is based on the general notion that accurate prediction of the flow field will guarantee an appropriate prediction of the thermal field, known as the . In this work, an assessment of the capability of the in predicting turbulent heat transfer when applied to shear flows of fluids of different Prandtl numbers will be given. Towards this, a detailed analysis of the predictive capabilities of the concerning entropy generation is presented for steady and unsteady state simulations. It turns out that the provides acceptable results only for mean entropy generation, while fails to predict entropy generation at small/sub-grid scales

    Entropy Generation Analysis in Turbulent Reacting Flows and Near Wall: A Review

    Get PDF
    This paper provides a review of different contributions dedicated thus far to entropy generation analysis (EGA) in turbulent combustion systems. We account for various parametric studies that include wall boundedness, flow operating conditions, combustion regimes, fuels/alternative fuels and application geometries. Special attention is paid to experimental and numerical modeling works along with selected applications. First, the difficulties of performing comprehensive experiments that may support the understanding of entropy generation phenomena are outlined. Together with practical applications, the lumped approach to calculate the total entropy generation rate is presented. Apart from direct numerical simulation, numerical modeling approaches are described within the continuum formulation in the framework of non-equilibrium thermodynamics. Considering the entropy transport equations in both Reynolds-averaged Navier–Stokes and large eddy simulation modeling, different modeling degrees of the entropy production terms are presented and discussed. Finally, exemplary investigations and validation cases going from generic or/and canonical configurations to practical configurations, such as internal combustion engines, gas turbines and power plants, are reported. Thereby, the areas for future research in the development of EGA for enabling efficient combustion systems are highlighted. Since EGA is known as a promising tool for optimization of combustion systems, this aspect is highlighted in this work

    Thermal Decomposition of a Single AdBlue¼ Droplet Including Wall–Film Formation in Turbulent Cross-Flow in an SCR System

    Get PDF
    Apart from electric vehicles, most internal combustion (IC) engines are powered while burning petroleum-based fossil or alternative fuels after mixing with inducted air. Thereby the operations of mixing and combustion evolve in a turbulent flow environment created during the intake phase and then intensified by the piston motion and influenced by the shape of combustion chamber. In particular, the swirl and turbulence levels existing immediately before and during combustion affect the evolution of these processes and determine engine performance, noise and pollutant emissions. Both the turbulence characteristics and the bulk flow pattern in the cylinder are strongly affected by the inlet port and valve design. In the present paper, large eddy simulation (LES) is appraised and applied to studying the turbulent fluid flow around the intake valve of a single cylinder IC-engine as represented by the so called magnetic resonance velocimetry (MRV) flow bench configuration with a relatively large Reynolds number of 45,000. To avoid an intense mesh refinement near the wall, various subgrid scale models for LES; namely the Smagorinsky, wall adapting local eddy (WALE) model, SIGMA, and dynamic one equation models, are employed in combination with an appropriate wall function. For comparison purposes, the standard RANS (Reynolds-averaged Navier–Stokes) k- Δ model is also used. In terms of a global mean error index for the velocity results obtained from all the models, at first it turns out that all the subgrid models show similar predictive capability except the Smagorinsky model, while the standard k- Δ model experiences a higher normalized mean absolute error (nMAE) of velocity once compared with MRV data. Secondly, based on the cost-accuracy criteria, the WALE model is used with a fine mesh of ≈39 millions control volumes, the averaged velocity results showed excellent agreement between LES and MRV measurements, revealing the high prediction capability of the suggested LES tool for valve flows. Thirdly, the turbulent flow across the valve curtain clearly featured a back flow resulting in a high speed intake jet in the middle. Comprehensive LES data are generated to carry out statistical analysis in terms of (1) evolution of the turbulent morphology across the valve passage relying on the flow anisotropy map, (2) integral turbulent scales along the intake-charge stream, (3) turbulent flow properties such as turbulent kinetic energy, turbulent velocity and its intensity within the most critical zone in intake-port and along the port length, it further transpires that the most turbulence are generated across the valve passage and these are responsible for the in-cylinder turbulence

    Computation of Entropy Production in Stratified Flames Based on Chemistry Tabulation and an Eulerian Transported Probability Density Function Approach

    Get PDF
    This contribution presents a straightforward strategy to investigate the entropy production in stratified premixed flames. The modeling approach is grounded on a chemistry tabulation strategy, large eddy simulation, and the Eulerian stochastic field method. This enables a combination of a detailed representation of the chemistry with an advanced model for the turbulence chemistry interaction, which is crucial to compute the various sources of exergy losses in combustion systems. First, using detailed reaction kinetic reference simulations in a simplified laminar stratified premixed flame, it is demonstrated that the tabulated chemistry is a suitable approach to compute the various sources of irreversibilities. Thereafter, the effects of the operating conditions on the entropy production are investigated. For this purpose, two operating conditions of the Darmstadt stratified burner with varying levels of shear have been considered. The investigations reveal that the contribution to the entropy production through mixing emerging from the chemical reaction is much larger than the one caused by the stratification. Moreover, it is shown that a stronger shear, realized through a larger Reynolds number, yields higher entropy production through heat, mixing and viscous dissipation and reduces the share by chemical reaction to the total entropy generated

    Computation of Entropy Production in Stratified Flames Based on Chemistry Tabulation and an Eulerian Transported Probability Density Function Approach

    Get PDF
    This contribution presents a straightforward strategy to investigate the entropy production in stratified premixed flames. The modeling approach is grounded on a chemistry tabulation strategy, large eddy simulation, and the Eulerian stochastic field method. This enables a combination of a detailed representation of the chemistry with an advanced model for the turbulence chemistry interaction, which is crucial to compute the various sources of exergy losses in combustion systems. First, using detailed reaction kinetic reference simulations in a simplified laminar stratified premixed flame, it is demonstrated that the tabulated chemistry is a suitable approach to compute the various sources of irreversibilities. Thereafter, the effects of the operating conditions on the entropy production are investigated. For this purpose, two operating conditions of the Darmstadt stratified burner with varying levels of shear have been considered. The investigations reveal that the contribution to the entropy production through mixing emerging from the chemical reaction is much larger than the one caused by the stratification. Moreover, it is shown that a stronger shear, realized through a larger Reynolds number, yields higher entropy production through heat, mixing and viscous dissipation and reduces the share by chemical reaction to the total entropy generated

    A tessellation-based colocalization analysis approach for single-molecule localization microscopy

    Get PDF
    International audienceMulticolor single-molecule localization microscopy (λSMLM) is a powerful technique to reveal the relative nanoscale organization and potential colocalization between different molecular species. While several standard analysis methods exist for pixel-based images, λSMLM still lacks such a standard. Moreover, existing methods only work on 2D data and are usually sensitive to the relative molecular organization, a very important parameter to consider in quantitative SMLM. Here, we present an efficient, parameter-free colocalization analysis method for 2D and 3D λSMLM using tessellation analysis. We demonstrate that our method allows for the efficient computation of several popular colocalization estimators directly from molecular coordinates and illustrate its capability to analyze multicolor SMLM data in a robust and efficient manner

    Analysis of Local Exergy Losses in Combustion Systems Using a Hybrid Filtered Eulerian Stochastic Field Coupled with Detailed Chemistry Tabulation: Cases of Flames D and E

    Get PDF
    A second law analysis in combustion systems is performed along with an exergy loss study by quantifying the entropy generation sources using, for the first time, three different approaches: a classical-thermodynamics-based approach, a novel turbulence-based method and a look-up-table-based approach, respectively. The numerical computation is based on a hybrid filtered Eulerian stochastic field (ESF) method coupled with tabulated detailed chemistry according to a Famelet-Generated Manifold (FGM)-based combustion model. In this work, the capability of the three approaches to capture the effect of the Re number on local exergy losses is especially appraised. For this purpose, Sandia flames D and E are selected as application cases. First, the validation of the computed flow and scalar fields is achieved by comparison to available experimental data. For both flames, the flow field results for eight stochastic fields and the associated scalar fields show an excellent agreement. The ESF method reproduces all major features of the flames at a lower numerical cost. Next, the second law analysis carried out with the different approaches for the entropy generation computation provides comparable quantitative results. Using flame D as a reference, for which some results with the thermodynamic-based approach exist in the literature, it turns out that, among the sources of exergy loss, the heat transfer and the chemical reaction emerge notably as the main culprits for entropy production, causing 50% and 35% of it, respectively. This fact-finding increases in Sandia flame E, which features a high Re number compared to Sandia flame D. The computational cost is less once the entropy generation analysis is carried out by using the Large Eddy Simulation (LES) hybrid ESF/FGM approach together with the look-up-table-based or turbulence-based approach

    New Limit on Axion-Dark-Matter using Cold Neutrons

    Get PDF
    We report on a search for axion-like dark matter using a Ramsey-type apparatus for cold neutrons. A hypothetical axion-gluon-coupling would manifest in a neutron electric dipole moment signal oscillating in time. Twenty-four hours of data have been analyzed in a frequency range from 23 ÎŒ\muHz to 1 kHz, and no significant oscillating signal has been found. The usage of present axion and dark-matter models allowed excluding the coupling of axions to gluons in the mass range from 1.5×10−201.5 \times 10^{-20} to 6.6×10−136.6 \times 10^{-13} eV with a best sensitivity of CG/fama=(3.1±0.2)×1012C_G / f_a m_a = (3.1 \pm 0.2) \times 10^{12} GeV−2^{-2} (95% C.L.)
    • 

    corecore